

A Foundational Platform: Tracing the Lineage from the 1995 Pulsed Particle Technology Test Vehicle to FRC-MHD Propulsion

The Physics and Strategic Imperative of FRC Propulsion

The pursuit of advanced space propulsion has historically been defined by a fundamental trade-off between thrust and efficiency. Chemical rockets provide high thrust but low efficiency (specific impulse), while electric propulsion systems offer high efficiency but very low thrust. The investigation into Field-Reversed Configuration (FRC) propulsion represents a concerted effort to break this paradigm by developing a technology that promises both high thrust and high specific impulse. This endeavor was not merely an incremental improvement but a strategic initiative to enable a new class of rapid, high-energy space missions, from interplanetary transit to advanced military platforms. The FRC's unique plasma physics provides the foundation for this transformative potential.

Defining the FRC Plasmoid

A Field-Reversed Configuration is a specific type of magnetized plasmoid, a self-contained, torus-shaped plasma entity. Its defining characteristic is a closed poloidal magnetic field structure, which effectively creates a magnetic "bottle" that confines the plasma without requiring continuous interaction with external magnetic field coils after its formation.¹ This autonomy is what allows the FRC to be translated and accelerated as a single, discrete unit.

Technically, the FRC is distinguished by its high plasma beta ($\beta = P / (B^2 / 2\mu_0)$, where P is the plasma pressure and B is the magnetic field strength), distinguishing it from a Spheromak, where the two field

components are of comparable strength.⁵ This flexibility in nomenclature is significant, as a program could operate under a generic banner like "plasmoid thruster" or "pulsed particle technology" while developing a highly specific FRC-based system.

The Performance Proposition: Why FRCs for Propulsion?

The strategic interest in FRCs stems from a unique combination of performance characteristics that directly address the limitations of existing propulsion systems.

First, FRC thrusters offer a projected specific impulse (I_{sp}) in the range of 5,000 to 25,000 seconds, with high efficiencies of 60-80%.¹ These figures represent an order-of-magnitude leap over the ~450 seconds of the best chemical rockets and enable mission profiles, such as rapid interplanetary transit, that are simply not feasible with conventional technology. Fusion experiments prior to 2001 had already demonstrated FRC velocities of approximately 250 km/s, validating the fundamental potential.²

Second, and perhaps most critically, the FRC is an electrodeless system. The plasmoid is formed and accelerated inductively, using time-varying magnetic fields to induce currents within the plasma, which then interact with the magnetic field to produce a powerful Lorentz force ($J \times B$).⁷ This eliminates the primary failure mode of other high-power electric propulsion concepts, such as magnetoplasmadynamic (MPD) thrusters, which suffer from the intense erosion of the electrodes used to channel current through the plasma.¹ This electrodeless nature enables the long-duration, high-reliability operation essential for crewed deep-space missions.

Finally, the concept is highly scalable. While initial experiments were designed in the 10 kW range, the underlying physics allows for scaling to the megawatt (MW) regime and beyond.² This scalability was recognized from the outset, with the earliest documented NASA programs explicitly targeting the development of an FRC thruster for a Nuclear Electric Propulsion (NEP) system.¹ This foresight reveals that the developers were not just building a thruster in isolation; they were creating the propulsive element for a future architecture powered by a compact, high-output nuclear reactor—a clear precursor to a fusion core. The pulsed nature of the thruster, which operates by repetitively producing and accelerating discrete plasmoids, provides an additional layer of control. This "digital" approach to propulsion, where thrust is modulated by the frequency and energy of each plasmoid pulse, allows for extremely fine and rapid adjustments, a crucial capability for the highly maneuverable platforms envisioned as the ultimate application.

The NASA Marshall Propulsion Program: Validating the FRC Thruster Concept (2001-2005)

The unclassified development of FRC propulsion in the United States was anchored at NASA's Marshall Space Flight Center (MSFC) in the early 2000s. This program served as the public-facing, foundational research effort that validated the core physics and established a baseline of engineering data. Through a logical progression of experiments, the MSFC team, in collaboration with key external experts, systematically de-risked the FRC thruster concept.

The FAST Experiment (c. 2001-2002): The Official Starting Point

The FRC Acceleration Space Thruster (FAST) experiment, initiated at MSFC around 2001, represents the official start of the documented U.S. government effort.² The stated objective was to investigate a repetitive FRC source as a thruster specifically for a Nuclear Electric Propulsion (NEP) system.¹ This explicit link to NEP is a vital strategic indicator, confirming that from its inception, the program was aimed at integrating the thruster with a high-density power source capable of supporting rapid, ambitious missions.

The research plan followed a methodical, phased approach. The initial focus was on the ionization, formation, and acceleration of a single plasmoid to precisely measure its efficiency and specific impulse.¹ This foundational work was intended to validate the basic principles before tackling the more complex engineering challenges of repetitive, burst-mode operation, for which 5-10 shot sequences were planned.¹

The personnel involved in the FAST experiment are crucial to understanding the broader network of collaboration. The project team included NASA MSFC researchers such as Adam Martin, Richard Eskridge, and Mike Houts. Critically, the author list on the seminal FAST publications also includes Dr. John Slough of the University of Washington.¹ Slough's involvement from the very beginning establishes a direct, foundational link between the official NASA program and the parallel, more advanced research being conducted in the academic and private sectors.

The Plasmoid Thruster Experiment (PTX) (c. 2003-2005): Maturation and Diagnostics

Following the initial success of FAST, the research evolved into the Plasmoid Thruster Experiment (PTX) around 2003.⁵ PTX operated on the same principles, using a single-turn conical theta-pinch coil to inductively form and accelerate plasmoids.⁷ This piece of hardware is the "plasma gun" at the heart of the system, employing a powerful, rapidly changing magnetic field to create the FRC.

The focus of PTX shifted from basic physics validation to detailed engineering characterization and optimization. Its stated purpose was to determine the overall feasibility of the concept by comprehensively measuring key performance parameters, including specific impulse, thrust, efficiency, and propellant mass utilization.⁵ A key research goal was to compare the performance of different types of plasmoids, specifically FRC-like versus Spheromak-like configurations, in a search for the optimal operational mode.⁵ This shift in focus is reflected in the name change itself; moving from the specific "FRC Acceleration Space Thruster" to the more generic "Plasmoid Thruster Experiment" accurately represents the broadening of the research scope.

The sophistication of the PTX program is evident in its extensive suite of diagnostics. The team employed B-dot probes to measure the magnetic field structure, Langmuir probes to characterize plasma density and temperature, high-speed cameras for visual analysis, and interferometers for density measurements.⁵ This experimental work was supported by concurrent simulations using MOQUI, a time-dependent magnetohydrodynamic (MHD) code.⁵ This level of detailed characterization indicates a serious, well-funded effort to build a deep, predictive understanding of the plasma dynamics, a necessary step toward developing a reliable, flight-ready system. The MSFC program, therefore, served as the unclassified backbone for a much larger national effort, creating a bedrock of validated data and expertise.

The MSNW-LANL Nexus: Pioneering High-Performance Plasmoid Acceleration

While NASA's MSFC program provided the public foundation for FRC propulsion research, the most advanced and ambitious work was being driven by a nexus of innovation centered on Dr. John Slough, his company MSNW, and collaborations with Los Alamos National Laboratory (LANL). This group was not merely validating a concept but actively engineering the high-performance systems required for revolutionary mission architectures, pushing the technology far beyond the baseline established by NASA.

Dr. John Slough: The Central Figure in FRC Propulsion

Dr. John Slough of MSNW and the University of Washington stands out as the single most pivotal figure in the development of FRC propulsion. His role as a co-author on the initial NASA FAST papers demonstrates his foundational involvement in the government's program.¹ However, his independent work reveals a far grander vision. Slough is the lead innovator behind numerous advanced FRC concepts, with deep expertise in FRC formation, acceleration, and, critically, sustainment using Rotating Magnetic Fields (RMFs)—a technique for maintaining and growing the FRC's magnetic flux over time.¹⁰

This vision is most clearly articulated in a proposal for a "Rapid Manned Mars Mission" funded by the NASA Institute for Advanced Concepts (NIAC).¹² In this concept, Slough's team proposed using a propagating magnetic wave accelerator to propel an FRC, with the goal of achieving exhaust velocities approaching 1% of the speed of light. The design envisioned a thruster scalable from 9 MW to 100 MW.¹² This level of ambition and performance is orders of magnitude beyond the 10 kW-class FAST and PTX experiments, illustrating that Slough's team was focused on designing the operational systems for a fusion-powered solar system infrastructure.

The Electrodeless Lorentz Force (ELF) Thruster: The Apex Predator

The culmination of the MSNW team's work during this period is the Electrodeless Lorentz Force (ELF) Thruster. A 2009 paper on the ELF thruster, co-authored by Slough, David Kirtley, and Thomas Weber, is explicitly titled "Pulsed plasmoid propulsion".¹⁴ The use of this precise terminology provides a powerful and direct connection to the "Pulsed Particle Technology" of the original query. The ELF thruster represents the high-performance, engineered embodiment of the PPT concept.

The ELF thruster is based on the same fundamental physics as the NASA experiments—inductive formation of a plasmoid—but represents a more mature design optimized for operational performance. It can be viewed as the "production" model for which FAST and PTX were the "research and development" prototypes. The core team of Slough, Kirtley, and Weber represents the intellectual capital that translated the foundational physics into a viable, high-performance thruster concept.¹⁴

The Role of LANL: Heritage and High-Energy-Density Physics

Los Alamos National Laboratory provided the deep institutional reservoir of expertise in the high-energy-density physics that underpins FRC technology. LANL has a multi-decade history of FRC research for fusion energy, developing the foundational knowledge in plasma formation, stability, and compression. The career path of key personnel illustrates this critical link. Mike Houts, a central figure in the NASA FAST program, worked at LANL for 11 years in senior roles related to nuclear reactor physics and design before transferring to NASA MSFC.¹⁶ This move represents a direct and deliberate transfer of expertise from the DOE's premier nuclear weapons and research laboratory into NASA's advanced propulsion directorate. Similarly, Thomas Weber of the ELF thruster team has also conducted research at LANL on related high-energy-density plasma experiments, such as the Field-Reversed Configuration Heating Experiment (FRCHX).¹⁸ This nexus allowed the agile and innovative MSNW to act as a "skunk works," rapidly developing advanced systems like ELF, while drawing on the deep institutional knowledge of LANL and the legitimizing programmatic structure of NASA.

A Network of Experts: Mapping the Personnel and Programmatic Overlaps

The development of FRC propulsion was not the product of isolated research projects but of a deeply integrated and collaborative national effort. A network analysis of the key individuals and their institutional affiliations reveals a strategically managed ecosystem designed to funnel expertise and technology from national laboratories and academia into a coherent advanced propulsion program.

The following table summarizes the key projects, personnel, and institutions that formed this network during the 1995-2009 timeframe.

Project Name	Lead Institution(s)	Key Personnel	Timeframe	Primary Objective / Description	Source(s)

FAST	NASA MSFC, U. Washington	A. Martin, R. Eskridge, M. Houts, J. Slough	c. 2001-2002	Investigate repetitive FRC source as a thruster for Nuclear Electric Propulsion (NEP) systems.	¹
PTX	NASA MSFC	R. Eskridge, A. Martin, M. Lee	c. 2003-2005	Determine feasibility of plasmoid propulsion; characteriz e performanc e of FRC-like vs. Spheromak -like plasmoids.	⁵
STX/TCS	U. Washington , MSNW	J. Slough	c. 1990s-200 0s	Study FRC formation and sustainmen t using Rotating Magnetic Fields (RMF).	¹⁰
ELF Thruster	MSNW	J. Slough, D. Kirtley, T. Weber	c. 2009	"Pulsed plasmoid propulsion"; a high-perfor mance, electrodele	¹⁴

				ss FRC thruster.	
NIAC Study	MSNW	J. Slough	c. 2000s	Conceptual design of a 100 MW FRC accelerator for a rapid crewed Mars mission.	¹²
FRCHX	LANL	T. Weber	c. 2000s	FRC heating experiment for magneto-inertial fusion and high-energy-density plasma research.	¹⁸

The Slough-NASA Bridge

The most direct and unambiguous link in this network is the collaboration between Dr. John Slough and NASA MSFC. His inclusion as a co-author on the initial FAST experiment papers in 2001 and 2002 is documentary proof that at the very inception of NASA's public FRC thruster program, the nation's foremost external expert was a core member of the team.¹ This was not a contractual relationship established later but a foundational partnership that shaped the program from day one. This structure reveals a "hub-and-spoke" model, with Slough acting as the central technical hub of FRC expertise, with spokes extending into NASA, academia, and the private sector to ensure coherence across the national effort.

The Houts LANL-NASA Bridge

The career trajectory of Dr. Mike Houts serves as a physical embodiment of the programmatic bridge between the Department of Energy's national laboratories and NASA's mission directorates. After 11 years in senior nuclear design and risk analysis roles at LANL, Houts moved to NASA MSFC to become the Nuclear Research Manager.¹⁶ He was immediately assigned to the FAST experiment team.¹ This career path represents a formal mechanism for transferring high-consequence nuclear systems expertise from the institution with the deepest knowledge base (LANL) to the agency with the operational need (NASA). Houts' subsequent work at NASA focused heavily on nuclear thermal propulsion and fission surface power systems, which aligns perfectly with the FAST experiment's stated goal of developing a thruster for NEP systems.¹⁹ This strongly suggests that a primary strategic driver for NASA was the development of space fission power, with the FRC thruster identified as the most compelling application that would justify the immense investment in developing a space-rated nuclear reactor.

The MSNW Core Team

The team at MSNW, consisting of John Slough, David Kirtley, and Thomas Weber, formed the engineering core that translated foundational physics into a high-performance thruster. Their 2009 paper on the ELF thruster is the culmination of this effort.¹⁴ Kirtley's extensive publication record shows a deep and long-standing collaboration with Slough on FRC compression, fusion engine concepts, and the ELF thruster itself.¹⁵ This trio represents the agile, innovative team that took the principles validated in the NASA programs and engineered them into a mature, operational concept.

The 1995 Precursor: Deconstructing the "Pulsed Particle Technology Test Vehicle"

While extensive documentation exists for the FRC propulsion research of the 2000s, the "Pulsed Particle Technology (PPT) Test Vehicle" from circa 1995 remains in the shadows. Lacking a direct public record, a robust, inferential case for its existence and purpose can be constructed by analyzing its nomenclature, function, and chronological necessity within the broader FRC development timeline. This analysis indicates the 1995 vehicle was a critical and

prescient precursor platform, developed to solve the control and integration challenges of this revolutionary technology.

Nomenclature Analysis: "Pulsed Particle Technology"

The term "Pulsed Particle Technology" is not an arbitrary or misleading code name; it is a simple, physically accurate, and technically unspecific description of how an FRC thruster operates. The system functions by repetitively forming and accelerating discrete, self-contained plasmoids.¹ From a dynamics perspective, each accelerated plasmoid behaves as a "particle"—a discrete packet of mass and momentum. The entire process is inherently pulsed. Therefore, "Pulsed Particle Technology" is an ideal generic project name or cover term for an FRC thruster program in its early, sensitive stages, as it accurately describes the function without revealing the specific FRC plasma physics.

Functional Analysis: The "Gimbal Platform"

The reference to a "Gimbal Platform" is a crucial clue to the vehicle's purpose. In conventional rocketry, gimbals are mechanical systems that pivot an engine to steer its thrust vector, thereby controlling the vehicle's attitude and trajectory.²² A propulsion system with the unprecedented performance potential of an FRC thruster would be fundamentally incomplete without a correspondingly advanced maneuverability and control system. Developing and testing a gimbaled platform is the most direct and mechanically understood method for validating the thrust vectoring capabilities and flight dynamics of a vehicle powered by a novel engine.

This mechanical gimbal can be understood as the necessary precursor to the far more advanced, solid-state thrust vectoring envisioned for a mature MHD system, which would use electromagnetic fields to steer the plasma exhaust without any moving parts.²³ Before developing the complex software and hardware for electromagnetic control, developers must first understand the vehicle's fundamental aerodynamic and dynamic response using a known, reliable mechanical system. The 1995 gimbal platform provides this essential intermediate step, suggesting a program focused not on plasma generation, but on vehicle control.

Chronological Necessity: The 1995 Airframe

The timeline of FRC thruster development places the most intensive, documented research—FAST, PTX, and the work at MSNW—in the early to late 2000s.¹ In advanced aerospace development, it is common for the airframe and the engine to be developed on parallel, and often desynchronized, tracks. It is therefore entirely logical that a test vehicle designed to house, power, and control a radical new propulsion system would be in development in the mid-1990s, years before the propulsion system itself reached the prototype stage. The 1995 "PPT Test Vehicle" fits perfectly into this timeline as the airframe awaiting its revolutionary engine. This suggests a bifurcated strategy: one team, likely an established aerospace prime, was tasked with building the "car" in the mid-90s, while another team, the plasma physics community, was tasked with perfecting the "engine" in the early 2000s, with the intent of integrating them once both reached maturity. The complete lack of public documentation on this vehicle, in stark contrast to the relative openness of the NASA FRC programs, further suggests the airframe and its control characteristics were considered more sensitive and were likely developed under a more highly classified program.

The Strategic Endgame: Propulsion-Airframe Integration for MHD-Powered Hypersonics

The decades-long development of FRC technology, from basic plasma physics research to advanced thruster prototypes, points toward a single strategic endgame: enabling air-breathing Magnetohydrodynamic (MHD) propulsion for hypersonic vehicles. The immense power density of a compact FRC-based fusion core is the long-sought key to unlocking this transformative capability. The entire FRC thruster research lineage can thus be re-contextualized as a technology maturation program for the core components of a future MHD engine, with the in-space thruster serving as a convenient and justifiable dual-use application.

MHD Propulsion: The Power-Density Bottleneck

MHD propulsion is a concept that uses powerful electric and magnetic fields to ionize and accelerate airflow, generating thrust without any moving parts like turbines or compressors.²³ For hypersonic flight, MHD offers revolutionary potential, including mitigating the intense heat

and drag from shock waves, controlling airflow into a scramjet inlet, and creating an "MHD bypass" engine where energy is extracted from the incoming air by an MHD generator and then added back to the exhaust by an MHD accelerator.²³

For over half a century, the primary obstacle to practical MHD air-breathing propulsion has been the "power-density bottleneck": the lack of a power source compact and powerful enough to generate the immense magnetic fields and electrical currents required. The timing of renewed interest in this field is telling. In the mid-1990s, the disclosure of the Soviet AJAX hypersonic vehicle concept, which reportedly incorporated plasma-based technologies, stimulated a resurgence of MHD and plasma aerodynamics research in the West.²⁵ This provides a powerful strategic context for the development of a platform like the "PPT Test Vehicle" at precisely the same time.

The FRC Fusion Core as the Enabler

An FRC-based compact fusion reactor is the ideal solution to the MHD power-density problem. FRCs have been studied for decades as a promising approach to achieving controlled nuclear fusion.¹ The work of Dr. Slough and others has explicitly focused on methods to compress FRC plasmoids to the densities and temperatures required for fusion ignition.¹⁰ Such a reactor would be compact, lightweight, and capable of generating the sustained, multi-megawatt power levels essential for a practical MHD propulsion system. The FRC thruster and the FRC fusion core are not separate technologies; they are two applications of the exact same underlying plasma physics. The development of one directly advances the other.

Propulsion-Airframe Integration (PAI): Designing the Vehicle

An MHD-powered vehicle represents the ultimate expression of Propulsion-Airframe Integration (PAI), a design philosophy where the propulsion system and the airframe are treated as a single, synergistic system.²⁶ In a hypersonic MHD vehicle, the airframe's forebody acts as the engine's compression surface, and magnetic fields shape the flow of ionized air around the entire body, effectively making the airframe an integral component of the engine.

The design of any test vehicle for such a system, even a very early one, would be fundamentally driven by these PAI principles. It would not be a conventional aircraft but would possess a unique geometry dictated by the requirements of the MHD flow path. The 1995

"PPT Test Vehicle," therefore, was likely not just a testbed for a thruster but a platform for exploring the novel aerodynamics and control principles of a future MHD-integrated airframe.

Synthesis and Assessment: A Coherent Developmental Lineage

The evidence establishes a clear, coherent, and strategically sound developmental lineage connecting the 1995 "Pulsed Particle Technology Test Vehicle" to the FRC propulsion programs of the 2000s and the ultimate goal of an MHD-powered aerospace platform. The seemingly disparate research efforts, personnel, and timelines converge into a single, multi-decade national strategy to master a disruptive propulsion technology.

The Unified Timeline (1995-2009)

The overall effort can be understood in four overlapping phases:

- **Phase 1 (c. 1995): Platform Development.** A program, likely sponsored by the Department of Defense and executed by a major aerospace contractor, develops the "PPT Test Vehicle." The primary focus is on the airframe, control systems, and vehicle dynamics, using a mechanical "Gimbal Platform" to validate thrust vectoring for a future high-power plasma engine.
- **Phase 2 (c. 2001-2005): Public-Facing Engine R&D.** NASA MSFC, in a foundational collaboration with Dr. John Slough, initiates the FAST and PTX programs. This effort serves to publicly validate the fundamental physics of FRC/plasmoid thrusters, creating an unclassified performance database and training a cadre of government experts.
- **Phase 3 (c. 2002-2009): High-Performance Engine Development.** Operating as an agile external partner, MSNW leverages the foundational research from NASA and the deep physics knowledge from LANL to develop high-performance thruster concepts, culminating in the Electrodeless Lorentz Force (ELF) Thruster.
- **Phase 4 (Concurrent): Strategic Integration.** The overarching strategic goal throughout this period remains the development of an FRC-based compact fusion core to solve the power-density bottleneck for air-breathing MHD propulsion, the technology that promises to revolutionize hypersonic flight.

Final Assessment

The analysis supports, with a high degree of confidence, the conclusion that the "Pulsed Particle Technology Test Vehicle" was not an isolated or dead-end project but the foundational hardware phase of a long-term strategy to develop FRC-MHD propulsion. The nomenclature "PPT" is a technically precise, if generic, descriptor for the FRC thruster concept. The "Gimbal Platform" represents the critical, mechanically primitive first step in solving the complex vehicle control problem that would later be addressed by non-mechanical, electromagnetic systems. Finally, the well-documented FRC research at NASA, MSNW, and LANL provides the "missing engine" for the 1995 airframe, with the extensive personnel and programmatic links between these efforts confirming a unified, collaborative, and strategically vital national endeavor.

Works cited

1. The FRC Acceleration Space Thruster (FAST) Experiment - NASA ..., accessed October 9, 2025, <https://ntrs.nasa.gov/citations/20020067411>
2. acceleration research experiment: Topics by Science.gov, accessed October 9, 2025, <https://www.science.gov/topicpages/a/acceleration+research+experiment>
3. The FAST (FRC Acceleration Space Thruster) Experiment, accessed October 9, 2025, <https://ntrs.nasa.gov/citations/20010073723>
4. The Plasmoid Thruster Experiment (PTX) - NASA Technical Reports ..., accessed October 9, 2025, <https://ntrs.nasa.gov/citations/20030106569>
5. The Plasmoid Thruster Experiment (PTX), accessed October 9, 2025, <https://ntrs.nasa.gov/api/citations/20030106569/downloads/20030106569.pdf>
6. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX) - Aerospace Research Central, accessed October 9, 2025, <https://arc.aiaa.org/doi/pdf/10.2514/6.2004-4094>
7. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX) - NASA Technical Reports Server, accessed October 9, 2025, <https://ntrs.nasa.gov/api/citations/20040086624/downloads/20040086624.pdf>
8. AIAA-2001-3671 A PLASMOID THRUSTER FOR SPACE PROPULSION, accessed October 9, 2025, <https://ntrs.nasa.gov/api/citations/20030067853/downloads/20030067853.pdf>
9. John SLOUGH | Research Director | Doctor of Philosophy | MSNW, LLC., Redmond - ResearchGate, accessed October 9, 2025, <https://www.researchgate.net/profile/John-Slough/2>
10. Question regarding John Slough's presentation on a new approach to Fusion (APS 2023), accessed October 9, 2025, https://www.reddit.com/r/fusion/comments/1i46230/question_regarding_john_slo_uhs_presentation_on_a/
11. Dr. John Slough MSNW "Rapid Manned Mars Mission with a Propagating Magnetic Wave Plasma Accelerator", accessed October 9, 2025,

<https://www.niac.usra.edu/files/studies/abstracts/359Slough.pdf>

12. Dr John Slough | Fuelling the Next Generation of Rockets with Nuclear Fusion, accessed October 9, 2025,
<https://www.scientia.global/dr-john-slough-fuelling-the-next-generation-of-rockets-with-nuclear-fusion/>

13. Thomas Weber - Google Scholar, accessed October 9, 2025,
<https://scholar.google.com/citations?user=CT6ErNwAAAAJ&hl=en>

14. David KIRTLEY | Helion Energy, Seattle | Fusion Engine | Research profile - ResearchGate, accessed October 9, 2025,
<https://www.researchgate.net/profile/David-Kirtley>

15. Finding God Through Science – Dr. Michael Houts' Story - C.S. Lewis Institute, accessed October 9, 2025,
<https://www.cslewisinstitute.org/resources/finding-god-through-science-michael-houts-story/>

16. Michael G. Houts Archives - Apologetics Press, accessed October 9, 2025,
<https://apologeticspress.org/people/michael-g-houts-phd/>

17. Thomas Weber - Los Alamos National Laboratory - Output, accessed October 9, 2025,
https://laro.lanl.gov/esploro/profile/thomas_weber/output/all?institution=01LANL_1NST

18. Ongoing Space Nuclear Activities by Michael G. Houts, Nuclear Research Manager, Exploration Advanced Capabilities Office, NASA M, accessed October 9, 2025,
<https://ntrs.nasa.gov/api/citations/20070032061/downloads/20070032061.pdf>

19. Mike HOUTS | National Aeronautics and Space Administration, Washington, D.C. | Research profile - ResearchGate, accessed October 9, 2025,
<https://www.researchgate.net/profile/Mike-Houts-2>

20. Faces of Technology: Meet Mike Houts - YouTube, accessed October 9, 2025,
<https://www.youtube.com/watch?v=COrA5VjeviU>

21. Bachelor Degree Rocket Engine Gimbal Test - YouTube, accessed October 9, 2025, <https://www.youtube.com/watch?v=7196ru3wpjA>

22. Magnetohydrodynamic drive - Wikipedia, accessed October 9, 2025,
https://en.wikipedia.org/wiki/Magnetohydrodynamic_drive

23. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design - NASA Technical Reports Server, accessed October 9, 2025,
<https://ntrs.nasa.gov/api/citations/20030025730/downloads/20030025730.pdf>

24. Plasma Aerodynamics: Current Status and Future Directions - AerospaceLab, accessed October 9, 2025,
<https://aerospacelab.onera.fr/sites/default/files/2024-01/AL10-01.pdf>

25. Synergistic Airframe-Propulsion Interactions and Integrations - NASA Technical Reports Server, accessed October 9, 2025,
<https://ntrs.nasa.gov/api/citations/19980055126/downloads/19980055126.pdf>

26. 872411: Propulsion-Airframe Integration for Commercial and Military Aircraft - Technical Paper - SAE Mobilus, accessed October 9, 2025,
<https://saemobilus.sae.org/papers/propulsion-airframe-integration-commercial->

[military-aircraft-872411](#)